Influence of mantle dynamics on the topographic evolution of the Tibetan Plateau: Results from numerical modeling
نویسندگان
چکیده
[1] We investigate numerically the evolution of crustal and lithospheric thickness, thermal structure, topography, and strain rate of the Tibetan Plateau through time, using the thin viscous sheet approach. We show that lithospheric mantle must have been removed from beneath Tibet to explain the present surface elevation and lack of regional surface slope. In the absence of this removal, the modeled topography reaches a maximum elevation of <4000 m (for weak rheology), or the surface slopes significantly northward (for strong rheology). The crust must have been warmed and weakened by an increase of radiogenic heat production at depth due to crustal thickening. In the absence of this warming, viscous stresses associated with plate convergence exceed stresses produced by topography, and the present pattern of vertical thinning and east-west extension would not have developed. Continuous removal of lithosphere, by delamination or convection, does not allow sufficient crustal warming and fails to reproduce either the present topography or the pattern of active deformation on the plateau in a reasonable time. Geologically rapid removal of the lithospheric root beneath the thickened crust of Tibet successfully explains the current elevation of the plateau, its lack of surface slope, the steep south and north margins, and the pattern of the present deformation, including vertical thinning, E-W extension, and extrusion and vertical axis rotation on the eastern margin. Our modeling suggests that this removal took place within the last 12 m.y. Citation: Jiménez-Munt, I., and J. P. Platt (2006), Influence of mantle dynamics on the topographic evolution of the Tibetan Plateau: Results from numerical modeling, Tectonics, 25, TC6002, doi:10.1029/2006TC001963.
منابع مشابه
Numerical Modeling of Saline Gravity Currents Using EARSM and Buoyant k- Turbulence Closures
Gravity currents are very common in nature and may appear in rivers, lakes, oceans, and the atmosphere. They are produced by the buoyant forces interacting between fluids of different densities and may introduce sediments and pollutants into water bodies. In this study, the hydrodynamics and propagation of gravity currents are investigated using WISE (Width Integrated Stratified Environments), ...
متن کاملشبیهسازی الگوی جریان با یک مدل عددی دوبعدی در بازهای از پیچانرود طبیعی؛ مطالعه موردی رودخانه خشکه رود فارسان، استان چهارمحال و بختیاری
The present paper tries to describe the advantage and improvement of a numerical model when predicting government processes on Flow Rivers. With regard to the important effect of the flow velocity and shear stress forces on river bank erosion, we apply a Two-Dimensional numerical model, named CCHE2D, to simulate river flow pattern at a meandering river Khoshk-e-Rud River of Farsan, 30 Km west o...
متن کاملSlowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics
[1] Reconstructions of the relative positions of the India and Eurasia plates, using recently revised histories of movement between India and Somalia and between North America and Eurasia and of the opening of the East African Rift, show that India’s convergence rate with Eurasia slowed by more than 40% between 20 and 10 Ma. Much evidence suggests that beginning in that interval, the Tibetan Pl...
متن کاملIs the Asian lithosphere underthrusting beneath northeastern Tibetan Plateau? Insights from seismic receiver functions
a r t i c l e i n f o a b s t r a c t Keywords: lithosphere–asthenosphere boundary Northeastern margin of the Tibetan Plateau Receiver functions Whether or not the Asian lithosphere has underthrusted beneath the Tibetan Plateau is important for understanding the mechanisms of the plateau's growth. Using data from the permanent seismic stations in northeastern Tibetan Plateau, we studied seismic...
متن کاملCrustal structure of the northeastern Tibetan plateau, the Ordos block and the Sichuan basin from ambient noise tomography∗
We apply ambient noise tomography to significant seismic data resources in a region including the northeastern Tibetan plateau, the Ordos block and the Sichuan basin. The seismic data come from about 160 stations of the provincial broadband digital seismograph networks of China. Ambient noise cross-correlations are performed on the data recorded between 2007 and 2009 and high quality inter-stat...
متن کامل